Course Title	Code	Semester	L+P Hour	Credits	ECTS
SYSTEMS PROGRAMMING	CSE232	$\mathbf{4}$	$\mathbf{2 + 2}$	$\mathbf{3}$	$\mathbf{6}$

Prerequisites	CSE114 - FUNDAMENTALS OF COMPUTER PROGRAMMING

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programs)
Course Type	Compulsory
Course Coordinator	
Instructors	Assist. Prof. Esin Onbaşıoğlu
Assistants	Gamze Uslu
Goals	The aim of this course is to provide students with knowledge and abilities to design system programs such as assemblers, linkers, loaders, macro-processors, editors, interpreters, compilers and operating systems using modern methodologies and to implement their design using modern development tools.
Content	Numbering system, basic computer hardware, assembly language programming, assemblers, relocation, linkers, loaders, macro processors, text editors, debuggers, formal specification of programming languages, introduction to compilers, interpreters, introduction to operating systems, Linux shell programming, term project.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Adequate knowledge in system programs (assemblers, loaders, linkers, macro-processors, text editors, debuggers, interpreters, compilers, operating systems).	1	1,4	A,D
2) Ability to use theoretical and applied information in these areas to design system software with realistic constraints.	4	$1,2,4$	A,B,D
3) Ability to conduct experiments, gather data, analyze and interpret results for investigating solutions to real life applications with assembly language programming and Unix shell programming.	4,5	1,3	A,C
4) Ability to devise, select, and use modern techniques and tools needed for the design and implementation of system programs.	4	$1,2,3,4$	A,B,D

| 5) Ability to work efficiently in intra-disciplinary
 teams and to work individually. | 6 | 3,4 | B,D |
| :--- | :--- | :--- | :--- | | Teaching
 Methods: | 1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study | |
| :--- | :--- | :--- |
| Assessment
 Methods: | A: Testing, B: Experiment, C: Homework, D: Project | |

COURSE CONTENT		
Week	Topics	Study Materials
1	Introduction (Numbering system, basic computer hardware, systems software, assembly language, addressing modes)	Textbook
2	Assembly Language Programming I (M6800 Instruction set, conditional instructions)	Textbook
3	Assembly Language Programming II (Loops, indexed addressing, subroutines)	Textbook
4	Assemblers	Textbook
5	Relocation and Loaders	Textbook
6	Linking	Textbook
7	MIDTERM EXAM I	Textbook
8	Macro-processors, C preprocessor	Textbook
9	Text editors and Debuggers	Textbook
10	Formal specification of programming languages and introduction to compilers	Textbook
11	Interpreters (parsing, symbol table, processing of statements), Shell programming	Textbook
12	MIDTERM EXAM II	Textbook
13	Introduction to operating systems I (user interface, I/O, Shell programming)	Textbook
14	Introduction to operating systems II (machine-independent functions, Shell programming)	Textbook

	RECOMMENDED SOURCES
Textbook	Lecture Notes: $\underline{\text { http://cse.yeditepe.edu.tr/coadsys/ }}$ Lab material: $\underline{\text { http://cse.yeditepe.edu.tr/coadsys/ }}$
Additional Resources	W. Wray, J. Greenfield, R. Bannatyne, "Using Microprocessors and Microcomputers", Prentice-Hall L. Beck, "System Software", Addison Wesley D.H. Marcellus, "Systems Programming for Small Computers", Prentice Hall

Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems. ability to work individually.
Ability to communicate effectively both orally and in writing; knowledge of a minimum of one foreign language.

Recognition of the need for lifelong learning; ability to access information,
8 to follow developments in science and technology, and to continue to educate him/herself.

9 Awareness of professional and ethical responsibility.
Information about business life practices such as project management, risk
10 management, and change management; awareness of entrepreneurship, innovation, and sustainable development.

Knowledge about contemporary issues and the global and societal effects of
11 engineering practices on health, environment, and safety; awareness of the x legal consequences of engineering solutions.

ects allocated based on student workload by the course description

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam weeks: $12 \times$ Total course hours)	12	4	48
Hours for off-the-classroom study (Pre-study, practice)	10	3	30
Midterm examination	2	2	4
Homework	10	4	40
Project	Total Work Load		25
Final examination	Total Work Load / 25 (h)		25
	ECTS Credit of the Course		3
			150

